領先一步
VMware 提供培訓和認證,助您加速進步。
瞭解更多RabbitMQ 是一個基於 高階訊息佇列協議 (AMQP) 的強大訊息中介軟體。由於 AMQP 規範的通用性,可以輕鬆地從包括 Python 在內的許多平臺連線到它。在本篇博文中,我們將
順便說一句
本篇博文中編寫的程式碼僅用於演示目的。請勿依賴這些演算法作為財務建議。閒話不多說,讓我們開始寫程式碼吧!
import pickle
import random
import time
class Ticker(object):
def __init__(self, publisher, qname):
self.publisher = publisher
# This quickly creates four random stock symbols
chars = range(ord("A"), ord("Z")+1)
def random_letter(): return chr(random.choice(chars))
self.stock_symbols = [random_letter()+random_letter()+random_letter() for i in range(4)]
self.last_quote = {}
self.counter = 0
self.time_format = "%a, %d %b %Y %H:%M:%S +0000"
self.qname = qname
def get_quote(self):
symbol = random.choice(self.stock_symbols)
if symbol in self.last_quote:
previous_quote = self.last_quote[symbol]
new_quote = random.uniform(0.9*previous_quote, 1.1*previous_quote)
if abs(new_quote) - 0 < 1.0:
new_quote = 1.0
self.last_quote[symbol] = new_quote
else:
new_quote = random.uniform(10.0, 250.0)
self.last_quote[symbol] = new_quote
self.counter += 1
return (symbol, self.last_quote[symbol], time.gmtime(), self.counter)
def monitor(self):
while True:
quote = self.get_quote()
print("New quote is %s" % str(quote))
self.publisher.publish(pickle.dumps((quote[0], quote[1], time.strftime(self.time_format, quote[2]), quote[3])), routing_key="")
secs = random.uniform(0.1, 0.5)
#print("Sleeping %s seconds..." % secs)
time.sleep(secs)
此應用程式隨機建立四個股票程式碼,然後開始建立行情。它最初在 10.0 和 250.0 之間選擇一個隨機值,然後將價格在先前價格的 90% 到 110% 之間隨機調整。然後,它在進入下一個行情之前隨機等待 0.1 到 0.5 秒。此程式碼設計的一個重要部分是釋出到 AMQP 代理與股票行情程式解耦。相反,它期望在構造時注入一個釋出者服務。
重要的是要注意我們正在使用 pickle 來序列化股票行情資料元組。在 AMQP 中,訊息的正文只是一系列位元組。儲存什麼以及如何序列化不屬於規範的一部分,而必須在傳送方和接收方之間達成一致。在我們的情況下,釋出者和訂閱者都同意它包含一個 pickled 元組。
from amqplib import client_0_8 as amqp
class PyAmqpLibPublisher(object):
def __init__(self, exchange_name):
self.exchange_name = exchange_name
self.queue_exists = False
def publish(self, message, routing_key):
conn = amqp.Connection(host="127.0.0.1", userid="guest", password="guest", virtual_host="/", insist=False)
ch = conn.channel()
ch.exchange_declare(exchange=self.exchange_name, type="fanout", durable=False, auto_delete=False)
msg = amqp.Message(message)
msg.properties["content_type"] = "text/plain"
msg.properties["delivery_mode"] = 2
ch.basic_publish(exchange=self.exchange_name,
routing_key=routing_key,
msg=msg)
ch.close()
conn.close()
這裡要特別注意的一點是,宣告的交換機型別為“fanout”。這意味著繫結到它的每個佇列都將收到訊息的副本,而無需在代理端進行昂貴的處理。
您可能會想,為什麼正文的 content_type 是“text/plain”,考慮到它是一個序列化的訊息。這是因為 Python 的 pickle 庫以 ASCII 編碼格式編碼資料,該格式可以用任何工具檢視而不會導致奇怪的行為。
import pickle
import random
import uuid
class Buyer(object):
def __init__(self, client, qname, trend=5):
self.holdings = {}
self.cash = 100000.0
self.history = {}
self.qname = qname
self.client = client
self.trend = trend
self.qname = uuid.uuid4().hex
def decide_whether_to_buy_or_sell(self, quote):
symbol, price, date, counter = quote
#print "Thinking about whether to buy or sell %s at %s" % (symbol, price)
if symbol not in self.history:
self.history[symbol] = [price]
else:
self.history[symbol].append(price)
if len(self.history[symbol]) >= self.trend:
price_low = min(self.history[symbol][-self.trend:])
price_max = max(self.history[symbol][-self.trend:])
price_avg = sum(self.history[symbol][-self.trend:])/self.trend
#print "Recent history of %s is %s" % (symbol, self.history[symbol][-self.trend:])
else:
price_low, price_max, price_avg = (-1, -1, -1)
print "%s quotes until we start deciding whether to buy or sell %s" % (self.trend - len(self.history[symbol]), symbol)
#print "Recent history of %s is %s" % (symbol, self.history[symbol])
if price_low == -1: return
#print "Trending minimum/avg/max of %s is %s-%s-%s" % (symbol, price_low, price_avg, price_max)
#for symbol in self.holdings.keys():
# print "self.history[symbol][-1] = %s" % self.history[symbol][-1]
# print "self.holdings[symbol][0] = %s" % self.holdings[symbol][0]
# print "Value of %s is %s" % (symbol, float(self.holdings[symbol][0])*self.history[symbol][-1])
value = sum([self.holdings[symbol][0]*self.history[symbol][-1] for symbol in self.holdings.keys()])
print "Net worth is %s + %s = %s" % (self.cash, value, self.cash + value)
if symbol not in self.holdings:
if price < 1.01*price_low:
shares_to_buy = random.choice([10, 15, 20, 25, 30])
print "I don't own any %s yet, and the price is below the trending minimum of %s so I'm buying %s shares." % (symbol, price_low, shares_to_buy)
cost = shares_to_buy * price
print "Cost is %s, cash is %s" % (cost, self.cash)
if cost < self.cash:
self.holdings[symbol] = (shares_to_buy, price, cost)
self.cash -= cost
print "Cash is now %s" % self.cash
else:
print "Unfortunately, I don't have enough cash at this time."
else:
if price > self.holdings[symbol][1] and price > 0.99*price_max:
print "+++++++ Price of %s is higher than my holdings, so I'm going to sell!" % symbol
sale_value = self.holdings[symbol][0] * price
print "Sale value is %s" % sale_value
print "Holdings value is %s" % self.holdings[symbol][2]
print "Total net is %s" % (sale_value - self.holdings[symbol][2])
self.cash += sale_value
print "Cash is now %s" % self.cash
del self.holdings[symbol]
def handle_pyamqplib_delivery(self, msg):
self.handle(msg.delivery_info["channel"], msg.delivery_info["delivery_tag"], msg.body)
def handle(self, ch, delivery_tag, body):
quote = pickle.loads(body)
#print "New price for %s => %s at %s" % quote
ch.basic_ack(delivery_tag = delivery_tag)
print "Received message %s" % quote[3]
self.decide_whether_to_buy_or_sell(quote)
def monitor(self):
self.client.monitor(self.qname, self.handle_pyamqplib_delivery)
此客戶端將買賣股票的策略很好地隔離了從 RabbitMQ 接收訊息的機制。
def monitor(self, qname, callback):
conn = amqp.Connection(host="127.0.0.1", userid="guest", password="guest")
ch = conn.channel()
if not self.queue_exists:
ch.queue_declare(queue=qname, durable=False, exclusive=False, auto_delete=False)
ch.queue_bind(queue=qname, exchange=self.exchange_name)
print "Binding queue %s to exchange %s" % (qname, self.exchange_name)
#ch.queue_bind(queue=qname, exchange=self.exchange_name, routing_key=qname)
self.queue_exists = True
ch.basic_consume(callback=callback, queue=qname)
while True:
ch.wait()
print 'Close reason:', conn.connection_close
這展示了連線到我們的 RabbitMQ 代理,宣告佇列,將其繫結到 fanout 交換機,然後註冊回撥的基本模式。
但是,讓我們不要過於糾結於如何讓這個演算法在挑選贏家和輸家方面做得更好。相反,讓我們認識到這使得任何金融公司都可以透過建立唯一的佇列,繫結到股票系統的 fanout 交換機,然後編寫自己的金融決策演算法來輕鬆訂閱股票行情。
關鍵點是,從 py-amqplib 遷移到 pika 其實非常容易。基於 AMQP 的方法是相同的,並且底層概念也是相同的。讓我們看看使用 pika 編寫一個替代的 AMQP 服務。
import pika
class PikaPublisher(object):
def __init__(self, exchange_name):
self.exchange_name = exchange_name
self.queue_exists = False
def publish(self, message, routing_key):
conn = pika.AsyncoreConnection(pika.ConnectionParameters(
'127.0.0.1',
credentials=pika.PlainCredentials('guest', 'guest')))
ch = conn.channel()
ch.exchange_declare(exchange=self.exchange_name, type="fanout", durable=False, auto_delete=False)
ch.basic_publish(exchange=self.exchange_name,
routing_key=routing_key,
body=message,
properties=pika.BasicProperties(
content_type = "text/plain",
delivery_mode = 2, # persistent
),
block_on_flow_control = True)
ch.close()
conn.close()
def monitor(self, qname, callback):
conn = pika.AsyncoreConnection(pika.ConnectionParameters(
'127.0.0.1',
credentials=pika.PlainCredentials('guest', 'guest')))
ch = conn.channel()
if not self.queue_exists:
ch.queue_declare(queue=qname, durable=False, exclusive=False, auto_delete=False)
ch.queue_bind(queue=qname, exchange=self.exchange_name)
print "Binding queue %s to exchange %s" % (qname, self.exchange_name)
#ch.queue_bind(queue=qname, exchange=self.exchange_name, routing_key=qname)
self.queue_exists = True
ch.basic_consume(callback, queue=qname)
pika.asyncore_loop()
print 'Close reason:', conn.connection_close
這與前面展示的另一個服務非常相似。建立連線略有不同,但包含相同的 प्रकारचे資料,如 broker 的主機,以及 username 和 password。 basic_publish 略有不同,訊息及其屬性被放在方法呼叫內部。py-amqplib 以稍有不同的結構宣告整個訊息及其屬性,然後將其作為一個引數傳遞給 basic_publish。關於規範的好處是知道所有重要的部分都在這兩個庫中。
與 py-amqplib 相比,pika 支援不同的等待機制。py-amqplib 具有阻塞等待,而 pika 同時提供阻塞機制和使用 Python 的 asyncore 工具 進行非同步操作的機制。我們可以在關於 RabbitMQ 和 Python 的未來部落格文章中探討這一點。
這些庫的回撥方法簽名略有不同。我們需要更新我們的經紀客戶端以適當地處理它。
def handle_pyamqplib_delivery(self, msg):
self.handle(msg.delivery_info["channel"], msg.delivery_info["delivery_tag"], msg.body)
將此與 pika 的回撥方法簽名進行比較。
def handle_pika_delivery(self, ch, method, header, body):
self.handle(ch, delivery_tag, body)
它們非常接近。重要的部分都在那裡。區別在於 pika 將訊息的各個部分分開,而 py-amqplib 將它們全部組合在一個類中。這就是為什麼回撥方法與提取我們訊息正文的實際方法之間存在解耦。透過提取必要的部分,可以輕鬆地在這些庫之間切換,而無需重寫我們的買賣演算法。
########################################
# To run this demo using py-amqplib,
# uncomment this block, and comment out
# the next block.
########################################
#from amqplib_client import *
#publisher = PyAmqpLibPublisher(exchange_name="my_exchange")
########################################
# To run this demo using pika,
# uncomment this block, and comment out
# the previous block
########################################
from pika_client import *
publisher = PikaPublisher(exchange_name="my_exchange")
########################################
# This part doesn't have to change
########################################
from ticker_system import *
ticker = Ticker(publisher, "")
ticker.monitor()
這個執行器可以在執行 py-amqplib 或 pika 版本的股票行情繫統之間切換。現在我們只需要一個執行器來執行經紀服務。
########################################
# To run this demo using py-amqplib,
# uncomment this block, and comment out
# the next block.
########################################
#from amqplib_client import *
#publisher = PyAmqpLibPublisher(exchange_name="my_exchange")
########################################
# To run this demo using pika,
# uncomment this block, and comment out
# the previous block
########################################
from pika_client import *
publisher = PikaPublisher(exchange_name="my_exchange")
########################################
# This part doesn't have to change
########################################
from buy_low_sell_high import *
buyer = Buyer(publisher, "", trend=25)
print "Buyer = %s" % id(buyer)
buyer.monitor()
在未來的部落格文章中,我們可以考慮使用 Pythonic 的 DI 容器來執行相同的程式碼。